Cancer Biology 1; Exercises week 4

- 1) A typical tumor contains a couple of so-called "driver-gene" mutations that can promote tumorigenesis. The remaining mutations are "passenger mutations" that confer no selective growth advantage.
- a) How can you distinguish between the two?
- b) Can you also distinguish between tumor suppressor and oncogenes when analyzing cancer genome sequences?
- c) You have identified frequent mutations in YFG (your favorite gene) in melanoma patients. How would you test if mutant YFG has oncogene versus suppressor gene function?
- 2) You have identified a mutant cell line that is hypersensitive to UV radiation.
- a) How would you determine if the mutation that gives rise to UV-hypersensitivity defines a new gene or if the gene is already known (i.e. corresponds to XP-A to XP-G, XP-V).
- b) How would you test if the mutant gene product is responsible for recognition of damaged DNA ((6-4) PP and CPD).
- c) The experiments in a) indicate that you have identified a mutation in a novel gene. How would you identify the corresponding gene?
- 3) You identified a novel gene (NOVEL1) whose loss of function causes sensitivity to agents that induce DNA double strand breaks (such as X-rays). You suspect that the gene product is either involved in NHEJ collaborating with NHEJ-factors (Ku, DNA-PKcs, Artemis, DNA ligase 4, XRCC4 etc), in HR collaborating with HR-factors (RAD51, BRCA1, BRCA2, and others) or that it may be involved in ATM-dependent checkpoint signaling.
- a) What genetic experiments can you carry out to determine if it functions in the DNA ligase 4 or the BRCA2-dependent pathways?
- b) How would you determine if it is involved in checkpoint signaling elicited by DNA double strand breaks?
- 4) a) It turns out that NOVEL1 is not involved in DNA double strand break repair. However, it is frequently mutated in prostate cancer with a mutation spectrum suggesting a loss of function. How would you identify compounds that specifically kill prostate cancer cells carrying NOVEL1 mutations.
- b) Homology searches with the NOVEL1 poylpeptide identify a domain with similarity to a MYB-type DNA binding domain. How would you identify the putative DNA binding sites of NOVEL1.
- c) How would you identify proteins that physically interact with NOVEL1. Please describe your experimental approach and all control experiments you consider of doing.
- 5) a) Describe how a DNA damage response is triggered by long stretches of single stranded DNA. Mention three proteins you know which are involved in this DNA damage response and describe their molecular function.
- b) What are the consequences if this pathway is activated during S phase of the cell cycle?

6) For the proteins listed below, state whether they act as a tumor suppressor or oncoprotein when mutant. What kind of mutations do you expect in cancer? Briefly justify your conclusion. Also state, when appropriate, how the G1/S control is affected by mutations of these proteins. ARF:

<u>P53:</u>

ATRIP:

BCL2:

APAF1:

BAX:

- 7) During your studies on p53 mutations in cancer you identify novel mutations that have not been characterized in the literature.
- a) You wonder if the mutations alter the DNA recognition sequence of p53. How can you test this hypothesis?
- b) You also want to test if the newly identified p53 mutations have a dominant negative effect on wild type p53. How can you do this? Please consult Figure 3A-C of Science 365, 599 (2019).

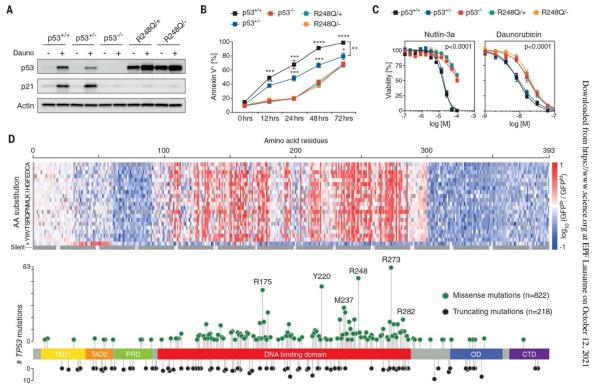


Fig. 3. *TP53* missense mutations in the DNA-binding domain confer a DNE. (A) MOLM13-*TP53* isogenic AML cell lines with p53*/-, p53*/-, and p53*/- as well as p53*R248Q/+ and p53*R248Q/- were treated with DMSO (–) or 100 nM daunorubicin (+) for 6 hours, after which whole-cell protein lysates were collected, run on a polyacrylamide gel, and immunoblotted for p53, p21, and actin (replicates, n=3; representative images are shown). (B) MOLM13-*TP53* isogenic AML cell lines were treated with 100 nM daunorubicin for up to 72 hours. At the indicated time points, cells were stained with Annexin V and analyzed by flow cytometry to assess total apoptotic cells (replicates, n=3; symbols represent averages of experimental replicates; error bars indicate SEM; *P=0.05, *P=0.01, ***P<0.001, ****P<0.0001, two-tailed Student's t test). (C) MOLM13-*TP53* isogenic AML cell lines were treated

with DMSO, nutlin-3a, or daunorubicin at increasing concentrations for 72 hours, after which cell viability was assessed by using CellTiter-Glo luminescent assay (replicates, n=3; symbols represent averages of experimental replicates; error bars indicate SEM). (**D**) Heatmap depicting the TP53 saturation mutagenesis screen results after nutlin-3a treatment, shown as \log_{10} of the ratio of normalized read counts in GFP^{lo} over GFP^{h1} cells per TP53 variant (top panel) overlaid on a lollipop plot demonstrating TP53 mutational data from 1040 patients with MDS, myeloproliferative neoplasms, and AML (bottom panel). Missense mutations (green circles) and truncating mutations (black circles) comprising frame-shift, nonsense, and splice mutations are shown. AA, amino acid; CTD, C-terminal domain; OD, oligomerization domain; PRD, proline-rich domain; TAD, transactivation domain.